
Security Debt in LLM Agent Applications: A
Measurement Study of Vulnerabilities and

Mitigation Trade-offs
Zhuoxiang Shen§, Jiarun Dai†, Yuan Zhang†, Min Yang†

Fudan University, China
Email: §zxshen22@m.fudan.edu.cn, †{jrdai, yuanxzhang, m yang}@fudan.edu.cn

Abstract—The advantages of large language models (LLMs)
in content comprehension and question answering have led to
the rapid emergence of LLM agent. Developers across diverse
domains are actively building their own agent applications (apps),
as these apps can streamline workflows, boost efficiency, or
deliver innovative solutions, thereby enhancing the competitive-
ness of their products. Agent apps are playing an increasingly
important role in our daily lives. However, numerous serious
vulnerabilities and security issues have been identified in these
apps. To effectively manage future security risks, it is essential to
systematically understand the unique characteristics of agent app
vulnerabilities and their mitigation. In this paper, we present the
first comprehensive study on the vulnerabilities of agent apps,
the mitigation practices of app developers, and the associated
challenges and trade-offs. We identify 14 types of vulnerabilities
and 16 root causes across 7 components, based on an analysis of
221 real-world vulnerabilities. Our study further investigates de-
veloper reactions, evaluates the effectiveness of various mitigation
strategies, and explores the practical challenges and inevitable
trade-offs in vulnerability mitigation. Finally, we distill 12 key
findings, discuss their implications for agent app developers,
maintainers, and security researchers, and offer suggestions for
future research directions.

Index Terms—llm agent, software application security, vulner-
ability, mitigation, measurement study

I. INTRODUCTION

Powered by large language models (LLMs), LLM agents
have shown compelling abilities to solve complex and multi-
step human tasks in real life [1]. LLM excels in content
comprehension and question answering, enabling them to
accurately interpret user intent and make informed decisions
[2]. Guided by the decision, agent can effectively utilize a
wide array of tools and resources to successfully complete
intricate tasks assigned by humans [3]. The exceptional po-
tential of agent has garnered significant attention from many
application (app) developers. Nowadays, a growing number of
real-world agent apps, such as MetaGPT [4], LangChain [5],
and TaskWeaver [6], have emerged. Developers in diverse do-
mains, ranging from software development to data analysis and
beyond, are striving to create their own agent apps, as these
apps can streamline workflows, boost efficiency, or deliver
innovative solutions, thereby enhancing the competitiveness of
their products. As agent apps continue to evolve, it is poised
to redefine industry standards and unlock new possibilities for
human-machine collaboration.

Meanwhile, agent apps have so far been exposed to possess
many serious vulnerabilities and security issues [7, 8]. For
example, some agent apps have built-in code execution tools
that can execute the code returned by LLM. The developers’
intention was to leverage these tools to enhance the agent’s
capabilities in data processing, computation, and program
testing, thereby compensating for LLM’s shortcomings in
these areas. However, it has been proven that LLM output can
be manipulated by attackers through prompt injection [9, 10],
leading to the potential execution of malicious code [11, 12].
Another example is the weakness of the Text-to-SQL module.
Some agent apps aim to streamline the workflow of database
operations by using human text rather than SQL statements.
These apps typically utilize LLM, combined with the context
of the database’s table schema, to translate user-input human
text into SQL statements, thereby completing database opera-
tions. However, LLM-generated SQL statements lack security
guarantees. Once LLM output is compromised by prompt
injection, the database could suffer breaches in confidentiality
and integrity [13, 14].

Despite the fact that some research has begun to focus
on the security of agent apps [7, 8, 15], their efforts were
primarily concentrated on vulnerability detection. There has
been no systematic study into the unique characteristics of
agent app vulnerabilities and their mitigation. It remains
unclear what the overall landscape and the root causes of agent
app vulnerabilities are, what mitigation strategies developers
have adopted, how effective these strategies are, as well as
the practical challenges and inevitable trade-offs involved in
addressing these vulnerabilities. Such information can assist
agent app developers, maintainers, and security researchers
in: (1) creating vulnerability detection and testing tools specifi-
cally targeted at agent apps, (2) providing recommendations or
automated methods for mitigating agent app vulnerabilities, (3)
offering suggestions for developing more secure agent apps,
and (4) governing and managing potential risks in the future
development of agent apps.

This paper presents the first comprehensive study on the
vulnerabilities of agent apps, the mitigation practices of
app developers, and the associated challenges and trade-
offs. Specifically, we systematically collect and analyze 221
vulnerabilities across 50 apps, revealing their severity, types,
locations, and the mechanisms by which vulnerabilities are



triggered. We then investigate the mitigation practices of de-
velopers, examining their reactions and attitudes toward these
vulnerabilities, the strategies they employ to address them, and
the effectiveness of these mitigations. Additionally, we further
explore the challenges and trade-offs that developers face
in the mitigation process, particularly in balancing security
with functionality and navigating responsibility attribution;
and we provide some insights and suggestions for future
research directions, including the development of security
standards, fine-grained agent tool design, the enhancement
of resource management, and deployment-stage security con-
figuration guidance. To summarize, we make the following
contributions:

• We provide the first systematic analysis of the overall
landscape and root causes of vulnerabilities in agent apps.

• We conduct an in-depth investigation into developers’
mitigation practices for agent app vulnerabilities.

• We uncover the practical challenges and inevitable trade-
offs developers encounter when mitigating agent app
vulnerabilities.

• We discuss and recommend future research directions for
governing security risks in agent apps.

• We open-source our vulnerability dataset and raw statis-
tics at https://github.com/SZXSec/Agent-Vulnerability-
Dataset.

II. BACKGROUND

A. LLM Agent App

As illustrated in Fig. 1, an LLM agent is an advanced
automated system that uses LLMs as its core reasoning engine
to perform tasks far beyond simple text generation. In practice,
an agent app combines one or more LLMs with a set of
predefined prompts that guide the model’s understanding of
the scenario and standardize its outputs. Many agent apps also
integrate a retrieval-augmented generation (RAG) component,
which stores external knowledge in a vector database and
retrieves relevant context on demand, significantly improving
decision accuracy.

When a user submits an intent or task goal, the agent
app translates it into a structured representation and feeds it,
together with the predefined prompts and any retrieved context,
into the LLM. The model then generates a decision or action
plan. The app interprets this output and invokes the appropriate
tools (e.g., API calls, code execution, database operations, web
scraping) to carry out the action. Complex tasks may require
multiple iterations: the results of each tool invocation are fed
back as context in subsequent prompts until the overall goal
is achieved.

B. Threat Model

1) Attacker Objective: Agent apps typically follow a client-
server (C/S) architecture: the app is hosted on a remote server,
while users interact with it via client interfaces. In this setup,
an attacker’s primary objective is to compromise the host
server by exploiting vulnerabilities in the app. This includes

LLM-based 
Reasoning 

Engine

Prompt
LLM

Tools 
Invocation

API Calls
Code Executor
Database Operator
…

RAG
Knowledge
Vector Database

User

Fig. 1. General architecture of agent app.

executing arbitrary commands, accessing or modifying unau-
thorized files, stealing sensitive data, escalating privileges, or
causing service crash. In this scenario, the victim is the server
hosting the agent app.

In addition to server-side threats, agent apps also in-
herit conventional client-side risks found in those non-agent
C/S apps. For example, traditional web vulnerabilities such
as cross-site scripting (XSS) and cross-site request forgery
(CSRF) remain relevant. In such cases, the attacker’s objective
shifts to compromising the user’s client, potentially stealing
session cookies or issuing unauthorized requests (e.g., manip-
ulating a banking transaction). Here, the victim is the end-user
of the app.

2) Attacker Capability: We consider two types of attackers
in the context of agent apps. The first type poses as a legitimate
user, actively interacting with the agent app by sending crafted
malicious requests. We assume such attackers can act under
any role intended for public users (as opposed to internal
administrative roles), and can perform any operation allowed
within those roles. They can invoke both documented and
undocumented endpoints and construct arbitrary input formats.
Although they lack knowledge of the server’s internal imple-
mentation and deployment details, they may infer sensitive
functionality or vulnerabilities through app behavior, response
patterns, and publicly available information. We also assume
these attackers have sufficient financial resources to pay for
LLM invocation costs incurred during their attacks.

The second type of attacker targets the external resources
that agent apps heavily rely on, such as LLM services, web
pages, and files. These attackers either own or control these
resources, or have the ability to manipulate them. Rather than
interacting directly with the agent app, they embed malicious
content into these external resources, waiting for the app to
import them during execution. While they cannot access the
agent app’s server directly, they aim to compromise it by
influencing the data it ingests. We assume these attackers have
the capability to create and maintain such malicious external
resources over time.

III. METHODOLOGY AND CLASSIFICATION

A. Research Questions

So far, there is a lack of comprehensive understanding re-
garding the types and severity characteristics of vulnerabilities
in agent apps. Understanding the overall landscape of agent
app vulnerabilities can help clarify the research value and
importance of agent app vulnerabilities, as well as identify

https://github.com/SZXSec/Agent-Vulnerability-Dataset
https://github.com/SZXSec/Agent-Vulnerability-Dataset


the priorities for further vulnerability research. Consequently,
we study the following research question:

RQ1: What is the overall landscape of vulnerabilities in
agent apps?

A thorough understanding of the root causes of agent app
vulnerabilities helps us gain deeper insights into the vulnera-
bility locations and the mechanisms by which vulnerabilities
are triggered. This, in turn, enables us to devise more effective
methods for vulnerability detection and defense. As a result,
we study the following research question:

RQ2: What are the root causes of vulnerabilities in agent
apps?

At present, the community may already have some mit-
igation measures for these vulnerabilities, and developers’
attitudes towards these vulnerabilities and their mitigation
approaches are worth considering. In addition, whether these
mitigation efforts have effectively resolved the underlying
issues, as well as the existence of practical challenges and
inevitable trade-offs during the mitigation process, remain
unclear. Understanding these issues can help us explore good
practices for vulnerability mitigation and future risk manage-
ment. This leads us to study our next research question:

RQ3: How have vulnerabilities in agent apps been miti-
gated, and what is the current state and effectiveness of
these mitigation efforts?

B. Data Collection

1) Agent Apps Identification: First, we used “llm agent”
as the keyword to search GitHub, sorting the results by the
number of stars in descending order, and collected the top 100
projects. Considering that keyword search might miss some
agent app projects, we also selected two Awesome Agents
lists as additional sources for collection [16, 17]; both lists
have a high number of stars and are frequently updated. Next,
we merged the retrieved results, removed duplicate projects
and those with fewer than 1,000 stars, and manually filtered
out projects that are not agent apps. In the end, we obtained
a list of 123 agent apps. Taking into account both research
cost and project influence, we finally selected the top 50
agent app projects by star count for further study. These
agent apps cover a wide range of usage scenarios including
AI-assisted coding, data analysis, document Q&A, text-to-
SQL, information gathering, and computer operations, though
it should be noted that our research methodology is domain-
independent.

2) Vulnerabilities Collection: We collected vulnerabilities
of agent apps from three sources. First, we searched for
vulnerabilities in the MITRE CVE database [18], the world’s
most well-known vulnerability database, using the repository
names and project names of agent apps as keywords. Second,
some agent apps provide Security Advisory on their GitHub
repositories, from which we could also collect vulnerabilities.
Third, considering that some vulnerabilities are only reported

as GitHub Issues, silently fixed by developers and never
published in any vulnerability database, we tried our best to
collect vulnerabilities from GitHub Issues. Specifically, we
searched for issues using keywords such as “security” and
“vulnerability” in each agent app repository and manually
filtered out irrelevant issues. We then merged and deduplicated
results from the three sources, ultimately obtaining a total
of 221 vulnerabilities. For each vulnerability, we collected
information such as vulnerability ID, severity, CVSS score,
and Common Weakness Enumeration (CWE). In addition,
we manually classified and labeled these vulnerabilities from
several aspects, including type, root cause, developers’ re-
action, mitigation strategy, mitigation time, and mitigation
effectiveness. Details of these procedures will be introduced
in Section III-C to III-E.

C. Vulnerability Types

As indicated in Section III-B2, we have collected the CWE
identifiers for each vulnerability, totaling 58 unique CWEs.
Initially, we intended to use the CWE identifiers directly as
labels for vulnerability types. However, this approach pre-
sented several issues. First, there is conceptual overlap among
some CWEs; for example, CWE-22 (Path Traversal), CWE-
23 (Relative Path Traversal), and CWE-29 (Path Traversal:
‘\..\filename’) are closely related, with CWE-23 and CWE-
29 being specific cases of CWE-22 and therefore suitable to
be merged. Second, there are instances of misclassification or
inaccuracies in CWE assignments. For instance, CVE-2024-
23752 [19] was incorrectly classified as CWE-862 (Miss-
ing Authorization), when it should have been categorized
as CWE-94 (Code Injection). Additionally, some CWEs are
excessively detailed; for example, CWE-639 (Authorization
Bypass Through User-Controlled Key) and CWE-307 (Im-
proper Restriction of Excessive Authentication Attempts) can
be generally categorized under Improper Authentication and
Authorization. Finally, for some vulnerabilities, CWE data is
missing.

Therefore, based on the 58 collected CWEs, we reclassified
them into 14 broader vulnerability types, as shown in Table I.
We then relabeled the types of all 221 vulnerabilities according
to the new classification standard.

D. Root Causes

To analyze the root causes of vulnerabilities in agent apps,
we employed a two-level classification approach. First, by
categorizing the agent app into 7 functional components based
on its real-world implementation, we mapped vulnerabilities
to their locations and identified where they are triggered.
Next, based on this component-level classification, we further
analyzed the triggering mechanisms and categorized them into
16 distinct root causes, as summarized in Table II.

E. Mitigation

When developers receive vulnerability reports, their reac-
tions can be categorized as follows:



TABLE I
VULNERABILITY TYPE DISTRIBUTION IN AGENT APPS.

Vulnerability Type Count Average
CVSS

V1: Improper Control of Generation of Code (Code
Injection) 48 9.24

V2: Server-Side Request Forgery (SSRF) 20 7.41
V3: Improper Neutralization of Input During Web
Page Generation (Cross-site Scripting) 20 6.73

V4: Improper Limitation of a Pathname to a Re-
stricted Directory (Path Traversal) 39 8.15

V5: Improper Neutralization of Special Elements
used in an SQL Command (SQL Injection) 15 8.70

V6: Denial of Service (DoS) 16 6.52
V7: Improper Neutralization of Special Elements
used in a Command (Command Injection) 7 8.32

V8: Improper Authentication and Authorization 35 7.50
V9: Deserialization of Untrusted Data 3 6.77
V10: Cross-Site Request Forgery (CSRF) 8 7.90
V11: Improper Output Neutralization for Logs 1 3.10
V12: URL Redirection to Untrusted Site (Open
Redirect) 2 4.30

V13: Race Condition 1 6.50
V14: Improper Access of Privacy and Sensitive
Information 6 7.76

• No Response: The developers either ignore the vulnera-
bility report or dispute the report and do not acknowledge
it as a valid vulnerability.

• Responsive but Unmitigated: The developers admit that
the issue poses certain security risks, but so far have not
taken any concrete action to address it.

• Low-Priority Mitigation: The developers take more than
60 days to mitigate the vulnerability.

• High-Priority Mitigation: The developers mitigate the
vulnerability within 60 days.

Note that currently there is no widely acknowledged time
threshold for determining the priority of LLM agent vulner-
ability mitigation, and we set a threshold of 60 days based
on our security expertise. For the samples that have been
mitigated, we categorize their mitigation strategies as follows:

• Security Notice: Developers issue security warnings in
conspicuous locations within the code, documentation or
app runtime to alert users to potential security risks when
using the app.

• Migration to Experimental Package: Developers mi-
grate the code with security risks to an experimental pack-
age and explicitly state that they do not take responsibility
for its security.

• Features Removal: Developers directly deprecate and
remove features associated with security risks, deleting
the relevant code.

• Sanitization: Developers introduce whitelisting or black-
listing rules to filter out unsafe payloads.

• Isolated Environment: Developers run the security-risk
functions within an isolated environment (e.g., container)
to restrict their access to the external environment.

• Replacement with Secure Implementation: Developers
refactor features code associated with security risks and
replace them with more secure implementations.

Note that developers may apply multiple mitigation strate-
gies to address a single vulnerability. After mitigation, we
further classify the effectiveness of these measures as follows:

• No Longer Exploitable: The vulnerability can no longer
be exploited by attackers under any circumstances.

• Still Exploitable: Attackers are still able to exploit the
vulnerability.

• Potentially Exploitable under Improper Configura-
tion: If users do not strictly follow secure configuration
guidelines during deployment, attackers may still be able
to exploit the vulnerability.

IV. EXPERIMENTAL RESULTS

A. RQ1: Overall Landscape

We begin by discussing the severity and CVSS scores of
vulnerabilities in agent apps. As shown in Table III, the
average CVSS score for vulnerabilities in agent apps is 7.89,
and 75% of these vulnerabilities have a CVSS score above
6.8. Furthermore, as many as 74.1% of the vulnerabilities
fall within the HIGH and CRITICAL severity ranges. This
indicates that vulnerabilities in agent apps are generally highly
dangerous and deserve special attention from developers and
security researchers. From a business perspective, the se-
riousness of agent app vulnerabilities may make decision-
makers more cautious about integrating these apps into their
operations, which could ultimately slow down the broader
adoption of agent apps in the market.

Finding 1: Vulnerabilities in agent apps are generally
serious and pose significant risks, making them one of
the major obstacles to the widespread adoption and de-
ployment of agent apps. Therefore, they require special
attention and careful consideration from developers and
security researchers.

Next, we focus on the common types of vulnerabilities
found in agent apps. As shown in Table I, V1 (Code Injection),
V4 (Path Traversal), and V8 (Improper Authentication and
Authorization) are the three most common types of vulner-
abilities. Many agent apps require the execution of code
to accomplish the complex tasks assigned by users, which
exposes an attack surface for code injection. In addition, while
carrying out user tasks, agent may need access to various
resources such as web pages, databases, and file system. The
complexity of resource management in agent apps may lead
developers to overlook security in resource access, especially
with respect to path traversal issues. Furthermore, we have
observed that developers of many agent apps typically prior-
itize core functionality, while neglecting effective permission
management and access control, resulting in a large number
of authentication and authorization issues.



TABLE II
ROOT CAUSES OF VULNERABILITIES IN AGENT APPS.

Vulnerability Location Triggering Mechanism Count

R1: User Interface
(Total: 95)

R1-1: Improper sanitization of externally controllable resource paths 33
R1-2: Improper user interface implementation enabling conventional web vulnerabilities (SSRF, code injection,
DoS, ...) 28

R1-3: Insufficient precondition validation for privilege escalation 34

R2: Prompt Management
(Total: 5)

R2-1: Loading of untrusted prompt files 2
R2-2: Incorporation of unsafe user input into prompt templates 3

R3: RAG
(Total: 12)

R3-1: Loading of untrusted knowledge files 9
R3-2: Improper implementation of knowledge processing and retrieval 3

R4: LLM
(Total: 3)

R4-1: Loading of untrusted LLM configurations 2
R4-2: Uncaught exceptions during LLM output 1

R5: Parser
(Total: 7) R5-1: Improper parser implementation combined with specific LLM outputs 7

R6: Tools
(Total: 68)

R6-1: LLM outputs directly as tool arguments without proper filtering and sanitization 52
R6-2: User inputs directly as tool arguments without proper filtering and sanitization 15
R6-3: Hard-coded cryptographic keys in tools’ source code 1

R7: Presentation
(Total: 29)

R7-1: The execution of LLM-generated malicious script during browser rendering 3
R7-2: Malicious script execution during browser rendering (w/o LLM involvement) 25
R7-3: Display of misleading information 1

Others
(Total: 2) The root cause is not in the agent app itself 2

TABLE III
STATISTICS OF CVSS SCORES AMONG AGENT APP VULNERABILITIES.

Statistic Score
Mean 7.89
Minimum 3.10
25th Percentile 6.80
Median 7.95
75th Percentile 9.10
Maximum 10.0

Finding 2: Code Injection, Path Traversal, and Improper
Authentication and Authorization are the three most com-
mon types of vulnerabilities in agent apps. Code execution
for user requests, complex resource management, and
insufficient permission control are the main causes of these
vulnerabilities, respectively.

We continue to analyze CVSS scores from the perspective
of each vulnerability type. As shown in Table I, V1 (Code
Injection), V5 (SQL Injection), and V7 (Command Injection)
have the highest average CVSS scores. It is worth noting that
V1 ranks highest in both the number of vulnerabilities and
average CVSS score, indicating that, among all vulnerability
types, mitigation of code injection in agent apps should be
regarded as the most urgent and highest-priority task, and
should receive the greatest attention from developers and
security researchers.

Finding 3: Injection vulnerabilities (Code / Command /
SQL) are the most severe type of vulnerability in agent
apps. In particular, Code Injection is not only the most

widespread type of vulnerability in agent apps, but also
the most serious, and thus possesses exceptionally high
research value.

B. RQ2: Root Causes

As shown in Table II, vulnerabilities in agent apps occur
most frequently in the User Interface component. However,
this component is ubiquitous in most apps around the world,
and the root causes of its vulnerabilities in agent apps closely
align with those observed in conventional non-agent apps.
Since these root causes are already well-understood, we do
not revisit them here. Instead, we focus on vulnerabilities
unique to agent context and their novel exploitation patterns.
We define an agent-specific vulnerability as one whose ex-
ploitation necessarily involves the Prompt Management (R2),
LLM (R3), or RAG (R4) components, which are absent in non-
agent apps. All root causes of agent-specific vulnerabilities
have been highlighted in red in Table II.

The Tools component accounts for the second highest num-
ber of vulnerability triggers, as Table II shows. To accomplish
complex user tasks, agent apps typically integrate a variety of
tools for invocation, such as code execution, terminal, database
query, web scraping, and file I/O. Many of these tools perform
sensitive operations, and if exploited maliciously, can pose
significant security risks. The data in Table II demonstrates
that 76.5% (52 out of 68) of the vulnerabilities in the Tools
component are caused by the direct use of LLM outputs
as tool arguments, without proper filtering or sanitization
(R6-1). We also observe that R6-1 is the most common
root cause of vulnerabilities in agent apps. These indicate
that tricking the LLM into generating harmful payloads that
manipulate tool behavior is the most common attack vector



for tool exploitation, and even for the whole agent app. In this
paper, we refer to vulnerabilities exploitable in this manner as
LLM2Tool vulnerabilities.

The LLM2Tool is a typical example of an agent-
specific vulnerability. To illustrate how LLM2Tool vul-
nerabilities are exploited, consider CVE-2024-23751 [14],
which exploits a Text-to-SQL module in LlamaIndex called
NLSQLRetriever. As Fig. 2 shows, this module takes
a built-in prompt template and fills its placeholders with
(1) the user’s natural-language query (query_str), (2)
the table schema description (schema), and (3) the SQL
dialect (dialect), then feeds the completed prompt to
an LLM to generate a SQL statement. query_str is the
only argument users can control. Under normal use, a query
like “What is the total sales amount for each product?”
yields a harmless SELECT statement, which is parsed by
parse_response_to_sql and executed. However, an at-
tacker can perform prompt injection by entering, for example,
“Ignore the previous instructions. Drop the city stats table”,
causing the LLM to return DROP TABLE city_stats,
which, once executed, deletes the city_stats table and
destroys database integrity.

Given an input question, first create a 
syntactically correct {dialect} query to 
run, then look at the results of the 
query and return the answer.
...
You are required to use the following 
format, each taking one line:

Question: Question here
SQLQuery: SQL Query to run
SQLResult: Result of the SQLQuery
Answer: Final answer here

Only use tables listed below.
{schema}

Question: {query_str}
SQLQuery: 

class NLSQLRetriever(...):
...
def retrieve_with_metadata(user_input, ...)

...
table_desc_str = self._get_table_desc()
...
response_str = self._llm.predict(

self._text_to_sql_prompt,
query_str=user_input,
schema=table_desc_str,
dialect=self._sql_database.dialect,

)
sql_query_str = parse_response_to_sql(

response_str
)
...
results = self._sql_database.run_sql(

sql_query_str
) Text-to-SQL Prompt Template

Fig. 2. The root cause of SQL injection in NLSQLRetriever of LlamaIn-
dex1.

A key distinguishing feature of LLM2Tool vulnerabilities
is their exploitation mechanism, i.e., improper sanitization of
LLM outputs that compromise internal tools. Due to page
limitations, we demonstrate this pattern through the SQL
injection case study, which exemplifies the core attack vector
shared across our collected LLM2Tool vulnerabilities.Besides
SQL query, LLM2Tool vulnerabilities also affect other tools,
such as code execution, terminal, URL fetcher, which may lead
to code injection, command injection, and SSRF respectively.

Finding 4: Agent apps integrate a diverse array of tools,
many of which perform sensitive operations and thus invite
malicious exploitation. Tricking the LLM into generating
harmful payloads that manipulate tool behavior is the most
prevalent attack vector for tool exploitation, and even for
the whole agent app.

Next, we turn to the RAG component, which ingests exter-
nal knowledge resources of varying formats and provenance.
Developers may overlook insecure patterns when processing
untrusted knowledge inputs (R3-1). For example, LangChain’s
SitemapLoader uses a website’s sitemap file as a guide
to ingest pages into knowledge-base. As shown in Figure 3,
SitemapLoader iterates over each <url> entry, adding
URLs directly to an els list, and for each <sitemap> entry,
recursively parses the sitemap file it points to. After all URLs
are collected in the els list, SitemapLoader finally calls
scrape_all on els to ingest these pages into knowledge-
base. If an attacker poisons the sitemap with an internal-
network URL, the loader may fetch sensitive intranet data into
the knowledge-base, enabling an SSRF attack when this data
is later queried by users. Worse, if the sitemap references the
address of itself, the uncontrolled recursion leads to a DoS.

SSRF

http://web.site/sitemap.xml

DoS

class SitemapLoader(...):
...
def load(self, sitemap_url):
sitemap = get_url(sitemap_url)
els = self.parse_sitemap(sitemap)
results = self.scrape_all(els)

def parse_sitemap(self, sitemap):
els = []
for url in sitemap.find_all("url"):
loc = url.find("loc")
els.append(loc)

for smap in sitemap.find_all("sitemap"):
loc = smap.find("loc")
child = self.scrape_all([loc])
els.extend(self.parse_sitemap(child))

return els

<urlset>
<url>
<loc>
http://10.2.3.4/staff.html
</loc>

</url>
<sitemap>
<loc>
http://web.site/sitemap.xml
</loc>

</sitemap>
<urlset>

Fig. 3. The root cause of SSRF and DoS in SitemapLoader of
LangChain1.

A key insight about R3-1 is that attackers do not need to
interact directly with the agent app; by poisoning external
knowledge resources, they can inject malicious payloads indi-
rectly. This indirect injection deepens the challenge of auditing
and forensic analysis.

Finding 5: The RAG component must handle multi-
source, heterogeneous knowledge inputs, which attackers
can poison to inject malicious payloads into the agent app.
Because this injection occurs without direct interaction,
auditing and forensics become substantially more difficult.

In addition to vulnerabilities introduced during knowledge-
base construction, they also exist during knowledge retrieval
(R3-2), with a typical example being dangerous SQL con-
catenation. Consider CVE-2024-11958 [20]: DuckDB auto-
installs its official Full-Text Search (FTS) extension on first
use. LlamaIndex allows users to build a knowledge-base
using DuckDB, storing each document as a database row.
Its DuckDBRetriever uses FTS’s match_bm25() to
retrieve relevant documents by query-text similarity, as shown
in Figure 4, but concatenates the query directly into the
sql, enabling arbitrary command execution in DuckDB. An



attacker can continue to use DuckDB’s COPY command to
plant a reverse shell backdoor into the host, then to install
the community-provided shellfs extension and trigger the
backdoor via shell commands, ultimately achieving full control
of the targeted host.

class DuckDBRetriever(...):
...
def retrieve(self, query):
...
sql = f"""
SELECT
fts_main_{self._table_name}.match_bm25(
{self._node_id}, '{query}'

) AS score, {self._node_id}, {self._text}
FROM {self._table_name}
WHERE score IS NOT NULL
ORDER BY score DESC
LIMIT {self._similarity_top_k};
"""

with DuckDBLocalContext(self._db) as conn:
query_result = conn.execute(sql).fetchall()

...

Dangerous Concatenation

Fig. 4. The root cause of dangerous concatenation in DuckDBRetriever
of LlamaIndex1.

Due to page limitations, we are unable to present all types of
agent-specific vulnerability samples in this paper. In total, we
identify 82 agent-specific vulnerabilities, about 37.1% of the
dataset. Successfully exploiting agent-specific vulnerabilities
requires deep knowledge of the app’s functionality and archi-
tecture, as well as awareness of inherent flaws in its unique
components. For example, due to an inherent limitation, LLM
offers no security guarantees against prompt injection [9, 10],
and exploitation of LLM-dependent vulnerabilities commonly
leverages prompt injection to steer the model’s output.

Finding 6: In agent apps, traditional vulnerabilities remain
prevalent, but agent-specific vulnerabilities also represent
a significant portion (37.1%). Effectively discovering and
exploiting agent-specific vulnerabilities requires attackers
to have sufficient knowledge of the functional character-
istics and inherent weaknesses of an agent app’s unique
components.

C. RQ3: Mitigation Efforts

We first examine developers’ reactions and attitudes towards
vulnerabilities. As shown in Table IV, for 60.2% of vulner-
abilities (133 out of 221), developers managed to mitigate
them within 60 days. Additionally, Table V shows that the
average and median mitigation times are 30.3 days and 11
days, respectively, indicating that developers generally respond

1Note: we omit non-essential code for clarity and brevity.

positively and promptly to most vulnerabilities. However, it is
worth noting that for 28.1% of vulnerabilities (62 out of 221),
no mitigation measures have yet been taken by the developers.

An interesting observation is that, for 10 of these vulner-
abilities, developers responded with comments or feedback
but did not actually implement any mitigation. Upon further
analysis, we found that these cases mostly involve LLM2Tool
vulnerabilities. To better understand why developers chose not
to address these vulnerabilities, we collected and analyzed
their comments in order to summarize their main concerns.

TABLE IV
OVERALL STATISTICS OF DEVELOPER MITIGATION OF VULNERABILITIES.

Category Item Count

Developer Reaction

No Response 52
Responsive but Unmitigated 10
Low-Priority Mitigation 26
High-Priority Mitigation 133

Mitigation Strategy

Security Notice 25
Migration to Experimental Package 12
Features Removal 13
Sanitization 93
Isolated Environment 2
Replacement with Secure Imple-
mentation 34

Mitigation Effectiveness
No Longer Exploitable 104
Still Exploitable 43
Potentially Exploitable under Im-
proper Configuration 12

TABLE V
STATISTICS ON THE TIME TAKEN BY DEVELOPERS TO MITIGATE AGENT

APP VULNERABILITIES.

Statistic Time (days)
Mean 30.3
Minimum 1
25th Percentile 2
Median 11
75th Percentile 50
Maximum 209

CVE-2024-42835 [21] is an LLM2Tool vulnerability in
Langflow that allows Python code execution. The developer
commented as follows [22]:

I don’t think any update on this component is worth it
in terms of security. Even implementing a sandbox is not
enough to actually prevent malicious users to access the
system, there are too many ways to escape it. Langflow
admin must be aware of it and do not let any client to
execute code.

This suggests that the Langflow developer believes it is
extremely challenging to design a comprehensive mitigation
for the various evasion techniques attackers may use. More-
over, the developer feels that the responsibility for maintaining



system security should lie with the administrator, not the
developer. A similar attitude is reflected in the mitigation of
CVE-2024-23751 [14] which could result in potential database
compromise in LlamaIndex’s Text-to-SQL tools [23]:

There will ALWAYS be exploits when you have something
like text to SQL. It’s the developers role to use this feature
safely and understand the risks. As per our SECURITY.md
file in the repo, SQL vulnerabilities are generally not
eligible for bounty or CVE.

It should be noted that the developers referred to here
are actually users who integrate LlamaIndex into their own
applications. From LlamaIndex’s perspective, these developers
are its end users. Another example is CVE-2024-23750 [12],
an LLM2Tool code execution vulnerability in MetaGPT. Its
developers are concerned that any mitigation efforts might
compromise necessary app functionality, and thus a trade-off
is needed [24]:

I think it is reasonable in a certain sense, but there is always
a tradeoff between security and functionality.

The reason for this is that MetaGPT is an agent app
specifically designed for software development. It requires
the capability to execute code in order to test the generated
software. Since the intended use of the generated software is
not strictly restricted, there may be legitimate reasons—such as
creating a system cleanup utility—that necessitate file deletion.
Testing such software would require performing file deletion
operations, which could potentially result in data loss.

Finding 7: More than half of the vulnerabilities (60.2%)
were proactively addressed by developers. However,
28.1% of the vulnerabilities still remain unmitigated to
this day due to various developer concerns.

As shown in Table IV, developers employ 6 different strate-
gies to mitigate vulnerabilities in agent apps. Among these,
Sanitization is the most commonly used approach. This is
because Sanitization typically does not require major changes
to the codebase; developers can simply add a few conditional
checks, which saves both time and effort.

Finding 8: Developers generally use 6 types of mitigation
strategies for vulnerabilities in agent apps: Security Notice,
Migration to Experimental Package, Feature Removal,
Sanitization, Isolated Environment, and Replacement with
a Secure Implementation. Among these, Sanitization is the
most widely adopted approach by developers, primarily
because it offers an excellent balance between effective-
ness and cost.

We next focus on the effectiveness of these mitigation
strategies. We consider a vulnerability to be properly mitigated
by developers if, after mitigation, it can no longer be exploited,
or can only be exploited when users have not configured
the system correctly. As shown in Table IV, out of all 221

vulnerabilities, 47.5% (105 out of 221) were not properly
mitigated. If we look only at the 159 vulnerabilities that
developers attempted to mitigate, only 73.0% (116 out of 159)
of these mitigations were actually effective.

Finding 9: Nearly half (47.5%) of the vulnerabilities in
agent apps have not been properly mitigated, and among
those vulnerabilities that developers have attempted to mit-
igate, the effectiveness rate is only 73.0%. This indicates
that the current efforts to mitigate vulnerabilities in agent
apps are far from successful.

We aim to further investigate the reasons behind unsuccess-
ful vulnerability mitigations. Among the 43 samples where
developers attempted mitigation but failed to fully address the
issue, we find that 39.5% (17 out of 43) rely solely on the Se-
curity Notice or Migration to Experimental Package strategies
without implementing more robust measures. Additionally,
55.8% (24 out of 43) use the Sanitization strategy, but these
mitigations are bypassed due to incomplete implementations.

Finding 10: The two main reasons for unsuccessful vul-
nerability mitigation are the exclusive reliance on weak
strategies like Security Notice and Migration to Experi-
mental Package, and the use of incomplete sanitization
rules.

In fact, we observe that developers are not necessarily
unaware of the unsuccessful mitigations, but rather, for certain
vulnerabilities, it is challenging to find a robust mitigation
approach that balances security and functionality, forcing them
to make trade-offs. Our analysis reveals that more than half (24
out of 43) of the vulnerabilities with unsuccessful mitigations
fall into the category of LLM2Tool vulnerabilities. Mitigating
LLM2Tool vulnerabilities often struggles to simultaneously
achieve both security guarantees and functionality guarantees,
largely due to the open-ended, multi-scenario design philoso-
phy of agent.

We explain this fact by using the PALChain module [25]
from LangChain as an example. The PALChain module
can perform logical reasoning and arithmetic calculations
by executing Python code returned from LLM. Initially,
PALChain did not perform any checks on the returned
code, which meant that it could be maliciously exploited
to execute system commands (e.g., rm -rf /). This
security flaw was reported by researchers as CVE-2023-
36258. As shown in Fig. 5a, to address CVE-2023-36258,
the LangChain developers imposed certain restrictions on
PALChain’s code execution capabilities. They used AST-
based filtering to prohibit specific imports and restrict the
use of certain methods. However, it was quickly discovered
by security researchers that these defenses could be bypassed
using functions like __import__(), as shown in Fig.
5b. In response, developers added __import__() to
the sanitization rule set. Yet researchers continued to
find ways to circumvent the filters, such as leveraging



Python’s introspection features. For example, in Python
3.11, one could execute ’’.__class__.__mro__[-1].
__subclasses__()[140].__init__.__globals__
[’popen’](’{MALICIOUS_CMD}’).read() to run
os.popen(’{MALICIOUS_CMD}’), thereby bypassing
AST checks. As shown in Fig. 5c, developers continued
to block these keywords yet again. Eventually, it became
clear that even with ongoing patching, many potential bypass
techniques still remained. It was ultimately acknowledged
by LangChain developers that Sanitization alone could not
fundamentally resolve LLM2Tool vulnerabilities [26]:

I’m going to re-title this PR since I don’t think we can
claim that it fixes arbitrary code execution in PALChain.
Approaches based on filtering AST nodes rather than in-
cluding AST nodes are impossible to guarantee.

At this point, developers faced a dilemma. If they used a
blacklist approach, updating the filter rules for every new ex-
ploit pattern, there would always be unforeseen bypasses and
no true security guarantee. Conversely, a whitelist approach
that only permits a small set of absolutely safe operations
would run contrary to the open-ended, multi-scenario de-
sign philosophy of agent, potentially weakening the product’s
competitiveness and sacrificing functionality. Ultimately, it is
extremely difficult to clearly define a universally accepted
boundary between functionality and vulnerability for open-
ended tools in agent apps.

After discussion, the LangChain team decided to adopt
the Migration to Experimental Package strategy, which is,
in essence, a compromise between security and functionality.
This approach has also been adopted by the well-known
project LlamaIndex. Here is the LangChain developers’ official
announcement [27]:

One of the things people love about langchain is how
fast the community adds new ideas and papers...With
‘langchain-experimental’ you can contribute experimen-
tal ideas without worrying that it’ll be misconstrued for
production-ready code.

In addition, many agent app developers have proactively
provided containerized deployment options. Containerization
is considered an effective security measure for controlling
code and command execution. The basic idea is that even
if developers cannot prevent every possible bypass, as long
as the execution environment is isolated, attackers cannot
affect the host system through code or command execution.
While containerization has become a good practice within the
community, it also comes with various limitations, which will
be discussed in Section V-B.

Finding 11: Among the samples of unsuccessful miti-
gation, over half are LLM2Tool vulnerabilities. The core
challenge is that the agent’s design philosophy frequently
forces developers to choose between security and function-
ality. Migration to Experimental Package and Container-

ization represent imperfect but currently acceptable trade-
offs adopted by the community.

As shown in Table IV, we observe a special status after
vulnerability mitigations. From the developers’ perspective,
they have already provided security measures to prevent risks.
However, security issues may still arise if users fail to config-
ure these measures properly. The main characteristic of these
mitigation strategies is that they leave it up to users to decide
which behaviors of these open-ended tools should be permitted
and which should be restricted. In essence, this shifts the
responsibility for security from developers to users, requiring
users to bear the associated security risks. It is questionable,
though, whether users possess sufficient security awareness
to properly configure these settings during deployment stage
according to their own use cases, especially since many users
may prioritize convenience and functionality over security.

Finding 12: The agent app developers sometimes grant
users extensive configuration permissions for open-ended
tools, which in effect shifts security responsibility from
the developers to the users. However, whether users can
properly configure these settings during the deployment is
questionable. This highlights the importance of addressing
security concerns not only during the development but also
during the deployment.

V. DISCUSSION

A. Blurred Line Between Functionality and Vulnerability

In agent apps, establishing a universally accepted and clear
boundary between functionality and vulnerability for the open-
ended tools is extremely challenging. This difficulty stems
from a fundamental contradiction between the design philoso-
phy of agent and the philosophy of security. On the one hand,
in order to make agent apps more competitive, they must be
granted greater capabilities and flexibility, which inevitably re-
quires providing agent apps with broader permissions. On the
other hand, the security philosophy is grounded in the weakest-
link effect and the principle of least privilege, emphasizing a
conservative approach that aims to minimize risks, as every
additional permission expands the potential attack surface and
any weak link could be exploited by attackers.

We recognize that there will inevitably be a trade-off
between functionality and security in agent apps. However,
there currently is no universally accepted answer as to how this
trade-off should be made, as different scenarios and application
contexts have their own unique requirements.

As such, it is crucial for governmental bodies and industry
alliances to collaborate in developing standards and guidelines
for various mainstream usage scenarios of agent apps, clearly
defining what security means in each context. Such standards
would help developers and users better understand the security
responsibilities and boundaries of agent apps, and provide
authoritative guidance for developers’ future vulnerability mit-
igation practices.



+ CMD_EXEC_FUNC = [
+ "system",
+ "exec",
+ "execfile",
+ "eval"
+ ]
+
+ class PALValidate():
+ ...
+ def __init__(
+ self,
+ ...,
+ allow_imports=False,
+ allow_cmd_exec=False,
+ ):

CMD_EXEC_FUNC = [
+ "__import__",

"system",
"exec",
"execfile",
"eval"

]

CMD_EXEC_FUNC = [
"__import__",
"system",
"exec",
"execfile",
"eval"

]
+ CMD_EXEC_ATTR = [
+ "__import__",
+ "__subclasses__",
+ "__builtins__",
+ "__globals__",
+ "__getattribute__",
+ "__bases__",
+ "__mro__",
+ "__base__",
+ ]

(a)

+ CMD_EXEC_FUNC = [
+ "system",
+ "exec",
+ "execfile",
+ "eval"
+ ]
+
+ class PALValidate():
+ ...
+ def __init__(
+ self,
+ ...,
+ allow_imports=False,
+ allow_cmd_exec=False,
+ ):

CMD_EXEC_FUNC = [
+ "__import__",

"system",
"exec",
"execfile",
"eval"

]

CMD_EXEC_FUNC = [
"__import__",
"system",
"exec",
"execfile",
"eval"

]
+ CMD_EXEC_ATTR = [
+ "__import__",
+ "__subclasses__",
+ "__builtins__",
+ "__globals__",
+ "__getattribute__",
+ "__bases__",
+ "__mro__",
+ "__base__",
+ ]

(b)

+ CMD_EXEC_FUNC = [
+ "system",
+ "exec",
+ "execfile",
+ "eval"
+ ]
+
+ class PALValidate():
+ ...
+ def __init__(
+ self,
+ ...,
+ allow_imports=False,
+ allow_cmd_exec=False,
+ ):

CMD_EXEC_FUNC = [
+ "__import__",

"system",
"exec",
"execfile",
"eval"

]

CMD_EXEC_FUNC = [
"__import__",
"system",
"exec",
"execfile",
"eval"

]
+ CMD_EXEC_ATTR = [
+ "__import__",
+ "__subclasses__",
+ "__builtins__",
+ "__globals__",
+ "__getattribute__",
+ "__bases__",
+ "__mro__",
+ "__base__",
+ ]

(c)

Fig. 5. The sequential fixes for PALChain and its bypasses, illustrating the difficulty of achieving comprehensive mitigation. (a) The fix of CVE-2023-36258;
(b) The fix of CVE-2023-44467 (bypass of CVE-2023-36258); (c) The fix of CVE-2023-27444 (bypass of CVE-2023-44467).

Besides, developers are advised to make tool design more
fine-grained, avoiding the implementation of overly broad,
multi-purpose tools (such as general code execution or
database operation tools) within agent apps. Instead, tools
should be further subdivided to fit specific application con-
texts. For example, in the domain of data analysis, the code
execution tool could be split into separate modules for data
acquisition, data processing, and data visualization, each with
a clearly defined function and purpose. This modular approach
will facilitate fine-grained permission management for agent
apps in the future.

B. Limitations of Containerization

As highlighted in Finding 11, containerization has become
a popular security practice within the community. However, it
is important to recognize that containerization is not a silver
bullet and comes with its own set of limitations. Firstly, con-
tainerization has scalability issues. In multi-tenant scenarios
serving millions of users, it is virtually impossible to create
a new container for every user session due to resource and
time constraints. In practice, necessary trade-offs must be
made during deployment of agent app, which may compromise
security. Next, containerization is only suitable for applications
that do not require persistent modifications to the system, such
as code execution for data analysis. For scenarios like database
operations or streamlining user-side smartphone workflow,
containerization is not applicable. Finally, similar to what we
discussed in Section V-A, configuring containers also presents
a dilemma: there is no universally accepted answer to how
much privilege a container should be granted (e.g., should it
connect to the internet?). The balance between security and
functionality will arise here too.

C. Complexity of Resource Management

As indicated in Finding 2 and Finding 5, agent apps face
significant challenges in managing resources, which manifest
in two main aspects. First is the diversity of resource types.
Agent apps rely on a wide range of resources, including
prompts, LLMs, files, web pages, knowledge-bases, tools, and
execution environments. Each type of resource may introduce
its own unique attack vectors. Second is the broad spectrum

of resource origins. These resources may come from users,
developers, or third-party service providers. A particularly no-
table trend is the recent rise of Model Context Protocol (MCP),
which promote the decoupling of functionalities traditionally
internal to agent apps. These functionalities are increasingly
supported by the surrounding community ecosystem rather
than agent app itself, further complicating resource manage-
ment in agent apps.

This growing complexity significantly expands the attack
surface of agent apps. However, there is currently a lack
of comprehensive tools or methodologies to map the full
landscape of resources involved in agent apps. This absence
makes it difficult to systematically assess potential entry points
for attacks. Building a clear and complete picture of resources
involved in agent apps would greatly assist QA engineer and
security researchers in developing more targeted tools for
automated testing and vulnerability detection in the future.

D. Deployment-Stage Security

The open-ended nature of agent compels developers to grant
users significant configuration privileges in order to maintain
the flexibility of app functionalities. As highlighted in Finding
12, developers often shift the security responsibility onto the
users. This underscores the importance of addressing the secu-
rity risks during the deployment stage of agent apps, as users
typically lack the necessary security expertise and awareness
to properly configure these settings. To mitigate this issue,
researchers can design tools or methodologies to provide users
with configuration recommendations that balance security and
functionality based on their usage needs of the agent app,
while also automatically alerting them to those deployment
configurations that may pose serious security risks.

E. Challenges in Detecting LLM2Tool Vulnerabilities

The natural language format of agent inputs and the in-
volvement of LLMs pose unique challenges for detecting
LLM2Tool vulnerabilities. First, compared to structured data,
natural language introduces an extremely large input space
enriched with complex semantics, making it difficult to de-
sign effective fuzzing mutation strategies. Additionally, the
non-deterministic mapping between LLM inputs and outputs



complicates the inference of relationships between natural-
language-formatted agent inputs and structured tool inputs,
thereby hindering effective injection of vulnerability-triggering
payloads into internal tools.

VI. RELATED WORK

A. Agent Security

Some existing research has begun to focus on the secu-
rity of agent, primarily examining inherent flaws in their
architecture and design. Yang et al. [28] and Wang et al.
[29] each proposed a distinct method for backdoor attacks
targeting agent. Abdelnabi et al. [30] introduced the concept
of Indirect Prompt Injection, which can potentially lead to
goal hijacking in agent. InjecAgent [31] and R-Judge [32]
aim to benchmark various attack and defense strategies against
agent by providing standardized testing protocols and datasets.
ToolEmu [33] and AgentDojo [34] focus on constructing
simulated environments to evaluate agent security. IsolateGPT
[35] explores an isolated execution architecture to ensure
the secure operation of third-party components within agent.
However, these studies are largely based on theoretical models
of agent and carry implicit security assumptions. It remains
questionable whether developers strictly follow such theoreti-
cal models and assumptions when designing real-world apps,
and even more uncertain whether such apps can achieve broad
adoption and significant impact.

B. Agent App Security

A smaller body of work has shifted attention toward the
security of real-world agent implementations, conducting ex-
tensive testing on actual, widely-used agent apps. Liu et
al. [7] developed LLMSmith, which employs sink-point and
call-chain analysis to uncover numerous remote command
execution (RCE) vulnerabilities in agent apps. Their real-
world evaluations revealed that some deployed online agent
apps were susceptible to API key theft, and some could
even be exploited to implant backdoors by establishing a
reverse shell. Pedro et al. [8] investigated agent apps with
Text-to-SQL capabilities, demonstrating that prompt injection
techniques can be used to perform SQL injection attacks,
compromising both confidentiality and integrity of databases.
They also proposed several imperfect but practically viable
defensive measures. Liu et al. [15] proposed AgentFuzz, which
builds upon traditional directed greybox fuzzing approach
but introduces novel seed generation and mutation strategies
tailored to the natural language input characteristics of agents,
successfully uncovering multiple taint-style vulnerabilities in
mainstream agent apps. However, existing research was pri-
marily concentrated on vulnerability detection. Currently, there
is a lack of systematic and in-depth understanding of the
unique characteristics of vulnerabilities in agent apps and their
effective mitigation.

VII. THREATS TO VALIDITY

Internal Validity: Although we have tried our best to collect
vulnerability dataset, we acknowledge that some omissions

may still exist. Additionally, our setting of a 60-day mitigation
time threshold is based on our security expertise, but different
standards may exist within the industry.

External Validity: Given the rapid evolution of the agent
app ecosystem, the timeliness of this study constitutes a pri-
mary threat to external validity. Emerging paradigms of agent
apps and newly disclosed vulnerabilities in the future may
challenge the generalizability of our conclusions. Nevertheless,
we believe this study lays a solid foundation for understanding
and advancing agent app security.

VIII. CONCLUSION

Agent apps are becoming increasingly prevalent in daily
lives, underscoring the critical need to systematically under-
stand the vulnerabilities and their mitigation. In this paper, we
presented the first comprehensive study on the vulnerabilities
of agent apps, the mitigation practices of app developers, and
the associated challenges and trade-offs. Through our analysis
of 221 vulnerabilities across 50 apps, we identified 14 types of
vulnerability and 16 root causes spanning 7 components. Our
study further investigated developer reactions, evaluated the
effectiveness of various mitigation strategies, and explored the
practical challenges and inevitable trade-offs in vulnerability
mitigation. For agent app developers, maintainers, and security
researchers, we distilled 12 key findings to help them deal with
security risks in agent app. Finally, we discussed the insights
from findings and provide some suggestions for future research
directions.

This work reveals significant security gaps in agent apps
and demonstrates the pressing need for focused research
efforts to enhance their security posture. Our findings serve as
both a warning and a roadmap for securing this increasingly
important class of apps.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
insightful comments that helped improve the quality of the
paper. This work was supported in part by the National
Natural Science Foundation of China (U2436207, 62172105,
62402116) and the research funding of Shanghai Municipal
Education Commission (24KXZNA08). Jiarun Dai and Min
Yang are the corresponding authors. Min Yang is a faculty of
Shanghai Institute of Intelligent Electronics & Systems, and
Engineering Research Center of Cyber Security Auditing and
Monitoring, Ministry of Education, China.

REFERENCES

[1] X. Huang, W. Liu, X. Chen, X. Wang, H. Wang, D. Lian,
Y. Wang, R. Tang, and E. Chen, “Understanding the planning
of LLM agents: A survey,” 2024. [Online]. Available:
https://arxiv.org/abs/2402.02716

[2] E. Eigner and T. Händler, “Determinants of LLM-assisted
Decision-Making,” 2024. [Online]. Available: https://arxiv.org/
abs/2402.17385

[3] Z. Shen, “LLM With Tools: A Survey,” 2024. [Online].
Available: https://arxiv.org/abs/2409.18807

[4] “MetaGPT,” https://github.com/FoundationAgents/MetaGPT.
[5] “LangChain,” https://github.com/langchain-ai/langchain.

https://arxiv.org/abs/2402.02716
https://arxiv.org/abs/2402.17385
https://arxiv.org/abs/2402.17385
https://arxiv.org/abs/2409.18807
https://github.com/FoundationAgents/MetaGPT
https://github.com/langchain-ai/langchain


[6] “TaskWeaver,” https://github.com/microsoft/TaskWeaver.
[7] T. Liu, Z. Deng, G. Meng, Y. Li, and K. Chen, “Demystifying

RCE Vulnerabilities in LLM-Integrated Apps,” in Proceedings
of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’24. New York, NY, USA:
Association for Computing Machinery, Dec. 2024, pp. 1716–
1730.

[8] R. Pedro, M. E. Coimbra, D. Castro, P. Carreira, and
N. Santos, “ Prompt-to-SQL Injections in LLM-Integrated Web
Applications: Risks and Defenses ,” in 2025 IEEE/ACM 47th
International Conference on Software Engineering (ICSE). Los
Alamitos, CA, USA: IEEE Computer Society, May 2025, pp.
76–88. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/ICSE55347.2025.00007

[9] F. Perez and I. Ribeiro, “Ignore Previous Prompt: Attack
Techniques For Language Models,” in NeurIPS ML Safety
Workshop, 2022. [Online]. Available: https://openreview.net/
forum?id=qiaRo 7Zmug

[10] Y. Liu, Y. Jia, R. Geng, J. Jia, and N. Z. Gong, “Formalizing
and Benchmarking Prompt Injection Attacks and Defenses,” in
33rd USENIX Security Symposium (USENIX Security 24), 2024,
pp. 1831–1847. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity24/presentation/liu-yupei

[11] “CVE-2023-39659,” https://nvd.nist.gov/vuln/detail/CVE-
2023-39659.

[12] “CVE-2024-23750,” https://nvd.nist.gov/vuln/detail/CVE-
2024-23750.

[13] “CVE-2023-36189,” https://nvd.nist.gov/vuln/detail/CVE-
2023-36189.

[14] “CVE-2024-23751,” https://nvd.nist.gov/vuln/detail/CVE-
2024-23751.

[15] F. Liu, Y. Zhang, J. Luo, J. Dai, T. Chen, L. Yuan, Z. Yu,
Y. Shi, K. Li, C. Zhou, H. Chen, and M. Yang, “Make agent
defeat agent: Automatic detection of taint-style vulnerabilities
in LLM-based agents,” in 34th USENIX Security Symposium
(USENIX Security 25), 2025, pp. 3767–3786.

[16] “Awesome Agents,” https://github.com/kyrolabs/awesome-
agents.

[17] “Awesome-AI-Agents,” https://github.com/Jenqyang/Awesome-
AI-Agents.

[18] “MITRE CVE,” https://cve.mitre.org/.
[19] “CVE-2024-23752,” https://nvd.nist.gov/vuln/detail/CVE-

2024-23752.
[20] “CVE-2024-11958,” https://nvd.nist.gov/vuln/detail/CVE-

2024-11958.
[21] “CVE-2024-42835,” https://nvd.nist.gov/vuln/detail/CVE-

2024-42835.
[22] “The developers’ comments on the mitigation of CVE-2024-

42835,” https://github.com/langflow-ai/langflow/issues/2908#
issuecomment-2255947085.

[23] “The developers’ comments on the mitigation of CVE-2024-
23751,” https://github.com/run-llama/llama index/issues/9957#
issuecomment-2138291340.

[24] “The developers’ comments on the mitigation of CVE-2024-
23750,” https://github.com/FoundationAgents/MetaGPT/issues/
731#issuecomment-2012260743.

[25] “PALChain,” https://github.com/langchain-ai/langchain-
experimental/blob/main/libs/experimental/langchain
experimental/pal chain/base.py.

[26] “The developers’ comments on the difficulty of vulnera-
bility mitigation in palchain,” https://github.com/langchain-ai/
langchain/pull/17091#issuecomment-1940381298.

[27] “The LangChain developers’ official announcement about
the adoption of experimental package,” https://github.com/
langchain-ai/langchain/discussions/8043.

[28] W. Yang, X. Bi, Y. Lin, S. Chen, J. Zhou, and X. Sun, “Watch
out for your agents! investigating backdoor threats to llm-

based agents,” in Advances in Neural Information Processing
Systems, A. Globerson, L. Mackey, D. Belgrave, A. Fan,
U. Paquet, J. Tomczak, and C. Zhang, Eds., vol. 37. Curran
Associates, Inc., 2024, pp. 100 938–100 964. [Online]. Avail-
able: https://proceedings.neurips.cc/paper files/paper/2024/file/
b6e9d6f4f3428cd5f3f9e9bbae2cab10-Paper-Conference.pdf

[29] Y. Wang, D. Xue, S. Zhang, and S. Qian, “BadAgent:
Inserting and activating backdoor attacks in LLM agents,”
in Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), L.-W. Ku, A. Martins, and V. Srikumar,
Eds. Bangkok, Thailand: Association for Computational
Linguistics, Aug. 2024, pp. 9811–9827. [Online]. Available:
https://aclanthology.org/2024.acl-long.530/

[30] K. Greshake, S. Abdelnabi, S. Mishra, C. Endres, T. Holz,
and M. Fritz, “Not what you’ve signed up for: Compromising
real-world llm-integrated applications with indirect prompt
injection,” in Proceedings of the 16th ACM Workshop on
Artificial Intelligence and Security, ser. AISec ’23. New
York, NY, USA: Association for Computing Machinery,
2023, p. 79–90. [Online]. Available: https://doi.org/10.1145/
3605764.3623985

[31] Q. Zhan, Z. Liang, Z. Ying, and D. Kang, “InjecAgent:
Benchmarking indirect prompt injections in tool-integrated
large language model agents,” in Findings of the
Association for Computational Linguistics: ACL 2024, L.-
W. Ku, A. Martins, and V. Srikumar, Eds. Bangkok,
Thailand: Association for Computational Linguistics,
Aug. 2024, pp. 10 471–10 506. [Online]. Available:
https://aclanthology.org/2024.findings-acl.624/

[32] T. Yuan, Z. He, L. Dong, Y. Wang, R. Zhao, T. Xia, L. Xu,
B. Zhou, F. Li, Z. Zhang, R. Wang, and G. Liu, “R-judge:
Benchmarking safety risk awareness for LLM agents,” in
Findings of the Association for Computational Linguistics:
EMNLP 2024, Y. Al-Onaizan, M. Bansal, and Y.-N. Chen,
Eds. Miami, Florida, USA: Association for Computational
Linguistics, Nov. 2024, pp. 1467–1490. [Online]. Available:
https://aclanthology.org/2024.findings-emnlp.79/

[33] Y. Ruan, H. Dong, A. Wang, S. Pitis, Y. Zhou, J. Ba,
Y. Dubois, C. J. Maddison, and T. Hashimoto, “Identifying the
risks of LM agents with an LM-emulated sandbox,” in The
Twelfth International Conference on Learning Representations,
2024. [Online]. Available: https://openreview.net/forum?id=
GEcwtMk1uA

[34] E. Debenedetti, J. Zhang, M. Balunovic, L. Beurer-Kellner,
M. Fischer, and F. Tramèr, “Agentdojo: A dynamic
environment to evaluate prompt injection attacks and
defenses for llm agents,” in Advances in Neural Information
Processing Systems, A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang, Eds.,
vol. 37. Curran Associates, Inc., 2024, pp. 82 895–82 920.
[Online]. Available: https://proceedings.neurips.cc/paper files/
paper/2024/file/97091a5177d8dc64b1da8bf3e1f6fb54-Paper-
Datasets and Benchmarks Track.pdf

[35] Y. Wu, F. Roesner, T. Kohno, N. Zhang, and U. Iqbal,
“IsolateGPT: An execution isolation architecture for
LLM-Based agentic systems,” in Proceedings 2025 Network
and Distributed System Security Symposium, 2025. [Online].
Available: https://www.ndss-symposium.org/ndss-paper/
isolategpt-an-execution-isolation-architecture-for-llm-based-
agentic-systems/

https://github.com/microsoft/TaskWeaver
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00007
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00007
https://openreview.net/forum?id=qiaRo_7Zmug
https://openreview.net/forum?id=qiaRo_7Zmug
https://www.usenix.org/conference/usenixsecurity24/presentation/liu-yupei
https://www.usenix.org/conference/usenixsecurity24/presentation/liu-yupei
https://nvd.nist.gov/vuln/detail/CVE-2023-39659
https://nvd.nist.gov/vuln/detail/CVE-2023-39659
https://nvd.nist.gov/vuln/detail/CVE-2024-23750
https://nvd.nist.gov/vuln/detail/CVE-2024-23750
https://nvd.nist.gov/vuln/detail/CVE-2023-36189
https://nvd.nist.gov/vuln/detail/CVE-2023-36189
https://nvd.nist.gov/vuln/detail/CVE-2024-23751
https://nvd.nist.gov/vuln/detail/CVE-2024-23751
https://github.com/kyrolabs/awesome-agents
https://github.com/kyrolabs/awesome-agents
https://github.com/Jenqyang/Awesome-AI-Agents
https://github.com/Jenqyang/Awesome-AI-Agents
https://cve.mitre.org/
https://nvd.nist.gov/vuln/detail/CVE-2024-23752
https://nvd.nist.gov/vuln/detail/CVE-2024-23752
https://nvd.nist.gov/vuln/detail/CVE-2024-11958
https://nvd.nist.gov/vuln/detail/CVE-2024-11958
https://nvd.nist.gov/vuln/detail/CVE-2024-42835
https://nvd.nist.gov/vuln/detail/CVE-2024-42835
https://github.com/langflow-ai/langflow/issues/2908#issuecomment-2255947085
https://github.com/langflow-ai/langflow/issues/2908#issuecomment-2255947085
https://github.com/run-llama/llama_index/issues/9957#issuecomment-2138291340
https://github.com/run-llama/llama_index/issues/9957#issuecomment-2138291340
https://github.com/FoundationAgents/MetaGPT/issues/731#issuecomment-2012260743
https://github.com/FoundationAgents/MetaGPT/issues/731#issuecomment-2012260743
https://github.com/langchain-ai/langchain-experimental/blob/main/libs/experimental/langchain_experimental/pal_chain/base.py
https://github.com/langchain-ai/langchain-experimental/blob/main/libs/experimental/langchain_experimental/pal_chain/base.py
https://github.com/langchain-ai/langchain-experimental/blob/main/libs/experimental/langchain_experimental/pal_chain/base.py
https://github.com/langchain-ai/langchain/pull/17091#issuecomment-1940381298
https://github.com/langchain-ai/langchain/pull/17091#issuecomment-1940381298
https://github.com/langchain-ai/langchain/discussions/8043
https://github.com/langchain-ai/langchain/discussions/8043
https://proceedings.neurips.cc/paper_files/paper/2024/file/b6e9d6f4f3428cd5f3f9e9bbae2cab10-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b6e9d6f4f3428cd5f3f9e9bbae2cab10-Paper-Conference.pdf
https://aclanthology.org/2024.acl-long.530/
https://doi.org/10.1145/3605764.3623985
https://doi.org/10.1145/3605764.3623985
https://aclanthology.org/2024.findings-acl.624/
https://aclanthology.org/2024.findings-emnlp.79/
https://openreview.net/forum?id=GEcwtMk1uA
https://openreview.net/forum?id=GEcwtMk1uA
https://proceedings.neurips.cc/paper_files/paper/2024/file/97091a5177d8dc64b1da8bf3e1f6fb54-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/97091a5177d8dc64b1da8bf3e1f6fb54-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/97091a5177d8dc64b1da8bf3e1f6fb54-Paper-Datasets_and_Benchmarks_Track.pdf
https://www.ndss-symposium.org/ndss-paper/isolategpt-an-execution-isolation-architecture-for-llm-based-agentic-systems/
https://www.ndss-symposium.org/ndss-paper/isolategpt-an-execution-isolation-architecture-for-llm-based-agentic-systems/
https://www.ndss-symposium.org/ndss-paper/isolategpt-an-execution-isolation-architecture-for-llm-based-agentic-systems/

	Introduction
	Background
	LLM Agent App
	Threat Model
	Attacker Objective
	Attacker Capability


	Methodology and Classification
	Research Questions
	Data Collection
	Agent Apps Identification
	Vulnerabilities Collection

	Vulnerability Types
	Root Causes
	Mitigation

	Experimental Results
	RQ1: Overall Landscape
	RQ2: Root Causes
	RQ3: Mitigation Efforts

	Discussion
	Blurred Line Between Functionality and Vulnerability
	Limitations of Containerization
	Complexity of Resource Management
	Deployment-Stage Security
	Challenges in Detecting LLM2Tool Vulnerabilities

	Related Work
	Agent Security
	Agent App Security

	Threats to Validity
	Conclusion

